Model *Sheath* Dinamis Tanpa Tumbukan Plasma Multispesies Bermuatan Tunggal untuk Studi Aplikasi Proses PIII*

Yoyok Cahyono*

Jurusan Fisika, FMIPA, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111

Intisari

Telah dipelajari sebuah model *sheath* dinamis plasma multispesies tanpa tumbukan untuk studi *Plasma Immersion Ion Implantation* (PIII). Model ini ditentukan berdasarkan pada massa efektif yang merupakan fungsi dari komposisi dan massa ion. Massa efektif ini digunakan untuk menentukan ekspansi *sheath* dinamis, rapat arus ion implan total, doses implan dan komponen doses ion implan. Hasil dari model ini dianalisis dengan menggunakan contoh plasma Ar-He.Model *sheath* dinamis ini dapat memberikan kemudahan untuk mengevaluasi proses PIII dan mendapatkan doses implan yang benar untuk plasma dengan spesies-spesies ion yang berbeda.

KATA KUNCI: sheath dinamis, plasma multispesies, muatan tunggal, massa efektif

I. PENDAHULUAN

Implantasi ion sering digunakan dalam teknik fabrikasi pembuatan semikonduktor dan proses pelapisan dalam bidang metalurgi dan optik. *Plasma Immersion Ion Implantation* (PIII) adalah salah satu teknik implantasi, dengan target tercelup dalam plasma. Saat tegangan tinggi negatif diberikan pada target, maka antara plasma dan target akan terbentuk *sheath*, seperti nampak pada Gambar 1. *Sheath* ini akan mempercepat gerak ion kedalam target, berubah terhadap waktu dan akan memenuhi hukum Child-Langmuir.

Model *Sheath* dinamis mempunyai peran yang sangat penting dalam proses PIII, karena dapat digunakan untuk memprediksi parameter proses dan hasil implantasi. Yang paling banyak digunakan adalah model *sheath* dinamis plasma spesies tunggal [1–3], walaupun dalam kenyataan plasma yang digunakan dalam proses PIII adalah plasma multispesies. Thomas [4] menggunakan model fluida untuk menghitung *sheath* dinamis plasma yang terdiri dari dua spesies N⁺ dan N²⁺ dengan menggunakan teknik *Plasma Source Ion Im*-

Gambar 1: Skema reaktor PIII planar dengan pulsa tegangan kotak.

© Jurusan Fisika FMIPA ITS

plantation (PSII).

Di sini dikembangkan sebuah model *sheath* dinamis tanpa tumbukan untuk plasma multispesies. Model yang dikembangkan didasarkan pada massa efektif, yang merupakan fungsi komposisi dan massa dari spesies yang berbeda, untuk menentukan ekspansi *sheath* dan arus ion implan.

Secara keseluruhan asumsi yang digunakan untuk merumuskan dan membahas model yang dikembangkan adalah: (1) Pulsa tegangan berbentuk kotak, (2) Bentuk target adalah planar, (3) Rapat ion homogen, (4) Plasma tanpa tumbukan. Ini berlaku untuk tekanan yang cukup rendah, (5) Gerak elektron *inertialess* selama pemberian tegangan.

II. METODE PENELITIAN

A. Model *sheath* Dinamis Plasma Multispesies Bermuatan Tunggal

Untuk mempermudah perumusan, dianggap plasma terdiri dari 2 spesies ion yang masing-masing mempunyai kerapatan n_1 dan n_2 . Distribusi tegangan V ditentukan oleh persamaan Poisson yang untuk ion bermuatan tunggal dan target berbentuk planar adalah

$$\frac{d^2V}{dx^2} = \frac{-q}{\epsilon_o} \left(n_e - n_i \right) = \frac{-q}{\epsilon_o} \left(n_e - (n_1 - n_2) \right)$$
(1)

dengan $n_i=(n_1+n_2)$ adalah rapat ion total plasma, qadalah muatan ion dan elektron, ϵ° adalah permitivitas hampa, dan n_e adalah rapat elektron. Rapat arus ion yang masuk target

$$J_i = qn_i(x)\vec{v_i}(x)$$
 dan $J_2 = qn_{2i}(x)\vec{v_{2i}}(x)$ (2)

060102-1

^{*}E-MAIL: yoyok@physics.its.ac.id

Dari hukum kekekalan energi, diperoleh

$$\vec{v_1}(x) = \sqrt{\frac{2qV(x)}{m_1}}$$
 dan $\vec{v_2}(x) = \sqrt{\frac{2qV(x)}{m_2}}$ (3)

sehingga kerapatan spesies ion-1 dan ion-2 dapat ditulis

$$n_1 = \frac{J_1}{q\sqrt{\frac{2qV(x)}{m_1}}}$$
 dan $n_2 = \frac{J_2}{q\sqrt{\frac{2qV(x)}{m_2}}}$ (4)

dengan m_1 dan m_2 adalah masing-masing massa spesies ion-1 dan ion-2.

Dari persamaan (4) dan $n_e = 0$, yaitu ketika diberikan tegangan tinggi negatip, maka persamaan Poisson (1) menjadi

$$\frac{d^2 V}{dx^2} = \frac{1}{\epsilon_o} \left(J_1 \sqrt{\frac{m_1}{2q}} + J_2 \sqrt{\frac{m_2}{2q}} \right) V^{-\frac{1}{2}}$$
(5)

Persamaan ini dapat juga ditulis

$$\frac{d}{dx} \left[\frac{1}{2} \left(\frac{dV}{dx} \right)^2 \right] = \frac{1}{\epsilon_o} \left(J_1 \sqrt{\frac{m_1}{2q}} + J_2 \sqrt{\frac{m_2}{2q}} \right) \frac{d}{dx} \left(2V^{\frac{1}{2}} \right)$$
(6)

Dengan mengintegralkan persamaan (6), akan didapatkan

$$\frac{dV}{dx} = 2\left[\frac{1}{\epsilon_0}\left(J_1\sqrt{\frac{m_1}{2q}} + J_2\sqrt{\frac{m_2}{2q}}\right)\right]^{\frac{1}{2}}V^{\frac{1}{4}}$$
$$\int_0^{V_o} V^{-1/4} dV = \int_0^s 2\left[\frac{1}{\epsilon_0}\left(J_1\sqrt{\frac{m_1}{2q}} + J_2\sqrt{\frac{m_2}{2q}}\right)\right]^{\frac{1}{2}} dx(7)$$
$$\frac{4}{9}\epsilon_0\frac{V_0^{3/2}}{s^2} = J_1\sqrt{\frac{m_1}{2q}} + J_2\sqrt{\frac{m_2}{2q}}$$

Untuk kontinuitas arus pada sisi *sheath*, rapat arus masingmasing spesies ion dapat ditulis

$$J_1 = q \frac{n_1(x)}{n_i} n_i \vec{v}_{10} = k_1(t) q n_i \vec{v}_{10}$$
(8)

$$J_2 = q \frac{n_2(x)}{n_i} n_i \vec{v}_{20} = k_2(t) q n_i \vec{v}_{20} \tag{9}$$

dengan $k_1(t) = \frac{n_1}{n_i}, k_2(t) = \frac{n_2}{n_i}$, dan merupakan fungsi waktu. \vec{v}_{10} dan \vec{v}_{20} adalah kecepatan rata-rata spesies ion-1 dan ion-2 pada sisi *sheath*. Setelah terjadi beberapa kali perpindahan ion, pada waktu tertentu arus ion akan mencapai keadaan mantap, sehingga $k_1(t) \rightarrow k_1, k_2(t) \rightarrow k_2$, dan $\vec{v}_{10} = \vec{v}_{20} = \vec{v}'$. Dengan demikian

$$\frac{J_1}{J_2} = \frac{k_1}{k_2}$$
(10)

Dianggap bahwa energi potensial semua spesies ion mengalami kenaikan yang sama didalam *Sheath*, sehingga dari hukum kekekalan energi akan didapatkan

$$\frac{1}{2}m_1\vec{v}_1^2 = \frac{1}{2}m_2\vec{v}_2^2 \tag{11}$$

Dari Pers.(11) ini dan jika waktu yang diinginkan untuk mencapai arus ion keadaan mantap sangat pendek, maka Pers.(8) dan Pers.(9) dapat dinyatakan sebagai

$$J_1 = k_1 q n_i \sqrt{\frac{m_2}{m_1}} \vec{v}_{20} \tag{12}$$

$$J_2 = k_2 q n_i \vec{v}_{20} \tag{13}$$

Sehingga rapat arus ion total

$$J = J_1 + J_2 = \frac{J_2}{k_2} \left(k_1 \sqrt{\frac{m_2}{m_1}} + k_2 \right)$$
(14)

Dari Pers.(14) ini kemudian dapat ditentukan rapat arus spesies ion-1

$$J_1 = \frac{k_1 \sqrt{\frac{m_2}{m_1}}}{k_1 \sqrt{\frac{m_2}{m_1}} + k_2} J \tag{15}$$

dan rapat arus spesies ion-2

$$I_2 = \frac{k_2}{k_1 \sqrt{\frac{m_2}{m_1} + k_2}} J \tag{16}$$

Dengan memasukkan Pers.(15) dan (16) kedalam Pers.(7) akan diperoleh

$$\left[\frac{(k_1+k_2)\sqrt{m_1m_2}}{k_1\sqrt{m_2}+k_2\sqrt{m_1}}\right]\frac{J}{\sqrt{2q}} = \frac{4}{9}\epsilon_0 \frac{V_0^{3/2}}{s^2}$$
(17)

Mengingat bahwa $k_1=\frac{n_1}{n_i}, k_2=\frac{n_2}{n_i}$ dan $n_1+n_2=n_i,$ maka

$$k_1 + k_2 = \frac{n_1}{n_i} + \frac{n_2}{n_i} = 1 \tag{18}$$

Sehingga rapat arus ion total dari Pers.(17) dapat ditulis

$$J = \frac{4}{9}\epsilon_0 \frac{k_1 \sqrt{m_2} + k_2 \sqrt{m_1}}{\sqrt{m_1 m_2}} \sqrt{2q} \frac{V_0^{3/2}}{s^2} = \frac{4}{9}\epsilon_0 \sqrt{\frac{2q}{M}} \frac{V_0^{3/2}}{s^2}$$
(19)

Pers.(19) ini merupakan Persamaan arus Child-Langmuir,

060102-2

dengan $\frac{k_1\sqrt{m_2}+k_2\sqrt{m_1}}{\sqrt{m_1m_2}} = \frac{k_2}{\sqrt{m_2}} + \frac{k_1}{\sqrt{m_1}} = \frac{1}{M}$, dan M adalah massa efektip saat arus ion dalam keadaan dinamis. Secara umum massa efektip ini dapat ditulis

$$\frac{1}{M} = \sum_{i=1}^{n} \frac{k_i}{\sqrt{m_i}} \tag{20}$$

dengan n, i, k_i dan m_i masing-masing menunjukkan jumlah spesies ion, spesies ion ke-i, perbandingan rapat ion spesies-i dan rapat ion total, dan massa ion spesies ke-i.

Jika arus ion mencapai keadaan mantap, rapat arus spesies ion-1 dan ion-2 pada sisi *sheath* dapat dinyatakan sebagai

$$\frac{J_1}{J} = \frac{k_1 q n_i v'}{q n_i v'} \qquad \text{atau} \qquad J_1 = k_1 J \tag{21}$$

$$\frac{J_2}{J} = \frac{k_2 q n_i v'}{q n_i v'} \qquad \text{atau} \qquad J_2 = k_2 J \tag{22}$$

Dengan memasukkan Pers.(21) dan (22) kedalam Pers.(7) akan diperoleh

$$\frac{4}{9}\epsilon_0 \frac{V_0^{3/2}}{s^2} = k_1 J \sqrt{\frac{m_1}{2q}} + k_2 J \sqrt{\frac{m_2}{2q}}$$
(23)

Atau rapat arus total plasma

$$J = \frac{4}{9}\epsilon_0 \sqrt{\frac{2q}{M}} \frac{V_0^{3/2}}{s^2}$$
(24)

dengan $\sqrt{M} = k_1\sqrt{m_1} + k_2\sqrt{m_2}$. Persamaan ini adalah sama seperti pada Pers.(19), dengan massa efektip *M* berbeda. Secara umum, massa efektip ini dapat ditulis

$$\sqrt{M} = \sum_{i=1}^{n} k_i \sqrt{m_i} \tag{25}$$

dengan k_i menunjukkan perbandingan rapat spesies ion ke-i dan rapat ion total plasma, dan m_i menunjukkan massa ion spesies ke-i.

Rapat arus ion dapat juga dinyatakan dengan

$$J = qn_i \frac{ds}{dt} \tag{26}$$

dengan *s* merupakan posisi sisi *sheath* relatip terhadap target. Dari Pers.(19), (24), dan (26) didapatkan kecepatan ekspansi *sheath* bentuk planar

$$\frac{ds}{dt} = \frac{4}{9} \frac{\epsilon_0}{n_i} \sqrt{\frac{2}{qM}} \frac{V_0^{3/2}}{s^2}$$
(27)

Kalau Persamaan ini diintegralkan secara analitik akan menghasilkan

$$s(t) = s_0 \left(\frac{2}{3}\omega_{pi}t + 1\right)^{1/3}$$
(28)

dengan,

$$s_0 = \sqrt{\frac{2\epsilon_0 V_0}{n_i q}},$$
 (posisi sisi *sheath* awal) (29)

$$\omega_{pi} = \frac{u_0}{s_0},$$
 (frekwensi plasma ion) (30)

$$u_0 = \sqrt{\frac{2qV_0}{M}}$$
, (kecepatan karakteristik ion) (31)

Rapat arus ion implantasi selama pulsa dikaitkan dengan *sheath* dinamis s(t) pada Pers.(28) di atas dapat dinyatakan dengan [5]

$$J(t) = \frac{4}{9}\epsilon_0 \sqrt{\frac{2q}{M}} V_0^{3/2} \left[\frac{1}{s^2(t)} + \frac{s_0^2}{s^4(t)} \right]$$
(32)

suku pertama persamaan di atas merupakan kontribusi *sheath* dinamis dari hukum Child-Langmuir dan suku kedua adalah kontribusi dari arus pergeseran ion yang diakibatkan oleh *sheath* matrik ion dan perubahan profil ion selama pulsa.

Doses implan selama satu pulsa dapat ditentukan dengan mengintegralkan rapat arus ion total sebagai [5]

$$D = \frac{1}{q} \int_0^{t_p} J(t)dt \tag{33}$$

Sedangkan komponen doses untuk setiap spesies ion diberikan dengan [5]

$$d_i = k_i D \tag{34}$$

III. HASIL DAN PEMBAHASAN

Rapat ion untuk plasma Ar-He, plasma Ar dan plasma He adalah dianggap sama yaitu $n_{iAr-He} = n_{iAr} = n_{iHe} =$ $10^{16}m^{-3}$. Komposisi dari plasma Ar-He adalah 50% ion Ar^+ dan 50% ion He⁺. Posisi sheath awal terhadap target adalah $s_0 = 1,05$ cm, dihitung dari Pers.(29) dengan permitivitas ruang hampa = $8,85.10^{-12}$ F/m dan muatan ion q = 1,6.10⁻¹⁹ C untuk ion bermuatan tunggal. Besarnya posisi sheath awal ini sama untuk ketiga plasma bila besarnya tegangan yang diberikan sama dan rapat ion plasma dari ketiganya sama. Ketiga plasma ini akan dibahas pada tegangan yang sama dengan lebar pulsa tegangan tp = 10^{-5} sekon. Dari Pers.(28)-(31) dapat ditentukan ekspansi sheath (posisi sheath relatif terhadap target sebagai fungsi waktu) untuk masing-masing plasma seperti yang ditunjukkan dalam Gambar 2. Ekspansi Sheath dinamis dalam Gambar 2 adalah dalam satu pulsa dengan tp = 10^{-5} sekon. Massa efektif M yang digunakan adalah pada Pers.(25) untuk keadaan mantap dan dari Pers.(20) untuk keadaan dinamis. Dari Pers.(20) didapatkan massa efektif keadaan dinamis $M327 = 1,54.10^{-26}$ kg dan dari Pers.(25) massa efektif keadaan mantap $M332 = 2,90.10^{-26}$ kg. Kurva [s41(t)] adalah ekspansi sheath untuk plasma Ar-He dengan memasukkan kedua massa efektif keadaan dinamis dan keadaan mantap dan dengan memperhitungkan periode transit diantara dua keadaan ini. Antara dua keadaan ini,

060102-3

Gambar 2: Ekspansi *sheath* plasma Ar-He (50% Ar^+ dan 50% He^+) dibanding dengan plasma Ar(Ar^+) dan plasma He(He^+) dengan lebar pulsa tp = 10^{-5} sekon

sebuah fungsi interpolasi linier digunakan untuk menghitung dan mengaproksimasi massa efektif M selama periode transit ini, yaitu

$$M(t) = \left(1 - \frac{t}{\tau}\right) \left(\frac{1}{\sum_{i=1}^{n} \frac{k_i}{\sqrt{m_i}}}\right)^2 + \frac{t}{\tau} \left(\sum_{i=1}^{n} k_i \sqrt{m_i}\right)^2,$$

untuk t < τ

$$M(t) = \left(\sum_{i=1}^{n} k_i \sqrt{m_i}\right)^2, \text{ untuk } t \ge \tau$$
(35)

dengan τ adalah periode transit rata-rata ketika arus ion mencapai keadaan mantap. Dari simulasi model fluida [5] telah didapatkan bahwa periode transit untuk mencapai keadaan mantap dari Helium adalah $\tau_{He} = 1,5.10^{-7}$ sekon dan untuk Argon adalah $\tau_{Ar} = 4,8.10^{-7}$ sekon. Karena itu periode transit untuk mencapai keadaan mantap dari plasma Ar-He ini diambil harga rata-rata dari periode transit plasma Ar dan He, yaitu 50% $\tau_{Ar} + 50\% \tau_{He} = 3,15.10^{-7}$ sekon. Dari perhitungan massa efektif untuk plasma Ar-He keadaan dinamis pada Pers.(20) dan keadaan mantap pada Pers.(25), serta periode transit antara dua kedaan ini maka sekarang Pers.(35) dapat ditulis menjadi

$$M(t) = \left(1 - \frac{t}{\tau}\right) M327 + \frac{t}{\tau} M332,$$

untuk t < 3,15.10⁻⁷ sekon
$$M(t) = M332,$$
 untuk t ≥ 3,15.10⁻⁷ sekon (36)

dengan M327 dan M332 menunjukkan massa efektif keadaan

dinamis pada Pers.(20) dan massa efektif keadaan mantap pada Pers.(25). Kurva [s41(t)] pada Gambar 2 dihitung dengan menggunakan Pers.(36) ini. Sedangkan ekspansi sheath untuk plasma Ar dan He menggunakan massa dari masingmasing ion $m_{Ar^+} = 6,68.10^{-2} \, \overline{6}$ kg dan $m_{He^+} = 6,68.0^{-27}$ kg. Dari Gambar 2 terlihat bahwa plasma He [kurva sHe(t)] mempunyai kecepatan ekspansi sheath yang lebih besar dari pada plasma Ar [kurva sAr(t)] disebabkan karena ion Helium mempunyai massa yang lebih kecil dari pada massa ion Argon. Jadi kalau dibandingkan dari ketiga plasma tersebut didapatkan bahwa plasma He mempunyai kecepatan ekspansi *sheath* paling besar, dan berikutnya berturut-turut adalah plasma Ar-He dan Ar. Dan kalau diperhatikan terlihat bahwa massa efektif dari plasma Ar-He, dari Pers.(36), besarnya terletak diantara massa ion Ar dan ion He. Sehingga kecepatan ekspansi sheath dari plasma Ar-He ini terletak diantara ekspansi Sheath plasma Ar dan He. Gambar 3 menunjukkan perbandingan dari ekspansi sheath dalam plasma Ar-He yang terdiri dari dua jenis ion , yaitu 50% Ar^+ dan 50% He^+ , dalam waktu 10^{-6} sekon pertama sama seperti pada Gambar 2 untuk massa efektif yang berbeda. Kurva pertama [s327(t)] dihitung dengan menggunakan massa efektif keadaan dinamis seperti yang diberikan pada Pers.(20). Kurva kedua [s332(t)] dihitung dengan menggunakan massa efektif keadaan mantap yang diberikan oleh Pers.(25). Dan kurva ketiga [s41(t)] menunjukkan ekspansi sheath dengan menggunakan massa efektif dari Pers.(36). Terlihat dari Gambar 3 tersebut, bahwa dipermulaan pulsa ekspansi sheath mengikuti kurva [s327(t)] dan setelah mencapai keadaan mantap, yaitu setelah waktu t = $3,15.10^{-7}$ sekon mengikuti kurva [s332(t)]. Ini menunjukkan bahwa massa efektif, saat arus ion ada dalam keadaan mantap yang diberikan oleh Pers.(25), adalah sebuah pendekatan yang sangat baik untuk perhitungan sheath dinamis. Sedangkan untuk massa efektif saat arus ion dalam keadaan dinamis hanya sesuai pada 10^{-7} sekon di permulaan pulsa. Sehingga bisa dikatakan bahwa massa efektif pada Pers.(20) tidak mendominasi dan bukan merupakan pendekatan yang sangat baik untuk perhitungan sheath dinamis.

Gambar 4 menunjukkan kurva rapat arus ion plasma Ar-He yang terdiri dari dua jenis ion dalam satu pulsa [j41(t)] dibandingkan dengan kurva dari plasma Ar[jAr(t)] dan plasma He [jHe(t)]. Ketiga kurva ini dihitung dengan menggunakan Pers.(32) yaitu dengan memasukkan kedua kontribusi sheath dinamis dari hukum Child-Langmuir dan dari arus pergeseran ion. Terlihat dari Gambar 4 bahwa plasma He mempunyai rapat arus ion yang lebih besar dari pada rapat arus ion Ar yang disebabkan karena massa ion He yang lebih kecil dibandingkan dengan massa Ar. Dengan massa yang lebih kecil, ion He akan mempunyai kecepatan yang lebih besar, yang berarti pula akan diperoleh rapat arus ion yang lebih besar. Mengingat plasma dua spesies ion Ar-He mempunyai besar massa efektif antara massa ion He dan ion Ar, baik dari massa efektif pada Pers.(20),(25) atau pada Pers.(36), maka rapat arus ion plasma 2 spesies ion Ar-He ini terletak antara rapat arus ion He dan Ar. Dengan menggunakan Pers.(33) dan Pers.(34) besarnya doses implan total dan komponen doses implan dari masingmasing jenis ion dalam plasma Ar-He, ditentukan seperti yang ditunjukkan dalam Tabel 1. Terlihat dari Tabel 1 bahwa ma-

Gambar 3: Ekspansi *sheath* plasma Ar-He dengan menggunakan 3 massa efektif yang berbeda yang diberikan oleh Pers.(20),(25) dan (35).

Gambar 4: Rapat arus ion total yang diprediksi dari model dalam satu pulsa dari Plasma Ar-He dibandingkan dengan plasma Ar dan plasma He.

kin besar tegangan pulsa yang diberikan akan diperoleh doses implan total plasma Ar-He dan komponen doses implan ion Ar^+ dan ion He^+ yang makin besar.

Gambar 5 menunjukkan ekspansi *Sheath* dinamis plasma Ar-He sama seperti pada Gambar 2 yaitu dengan komposisi 50% ion Ar^+ - 50% ion He^+ [kurva s4150(t)] dibandingkan dengan ekspansi *sheath* dinamis plasma yang sama tetapi dengan komposisi 25% ion Ar^+ - 75% ion He^+ [kurva s4125(t)] dan 75% ion Ar^+ - 25% ion He^+ [kurva s4175(t)]. Terlihat dari Gambar 5 bahwa plasma Ar-He dengan kompo-

Gambar 5: Ekspansi *sheath* Dinamis Plasma Ar-He dengan komposisi ion Ar^+ dan ion He^+ : 50% -50%, 25% - 75% dan 75% - 25% dengan massa efektif dari Pers. (360

Gambar 6: Rapat arus ion total plasma Ar-He dengan komposisi: 50% ion Ar^+ - 50%, ion He^+ , 25% ion Ar^+ - 75% ion He^+ , dan 75% ion Ar^+ - 25% ion He^+ .

sisi ion Ar^+ lebih besar dari ion He^+ mempunyai ekspansi *sheath* dinamis lebih kecil dibandingkan dengan ekspansi *sheath* dinamis plasma Ar-He dua komposisi yang lain. Ini disebabkan karena ion Ar^+ mempunyai massa yang lebih besar sehingga dengan persentase yang lebih besar, maka massa efektif (Pers.(36)) lebih besar dibandingan dengan massa efektif komposisi yang lain dimana persentase ion Ar^+ lebih kecil.

Gambar 6 menunjukkan rapat arus ion plasma Ar-He dengan komposisi sama seperti pada Gambar 5. Karena mempunyai massa efektif yang lebih besar atau ekpansi *sheath* di-

Tegangan V ₀	Pers.(25)		Pers.(36)	
	D_{Ar-He}	$d_{Ar^+} = d_{He^+}$	D_{Ar-He}	$d_{Ar^+} = d_{He^+}$
10 kVolt	6,60.10 ¹ 4	$3,30.10^{1}4$	7,13.10 ¹ 4	$3,57.10^{1}4$
40 kVolt	$3,16.10^{1}5$	$1,58.10^{1}5$	$3,30.10^{1}5$	$1,65.10^{1}5$
70 kVolt	$6,02.10^{1}5$	$3,01.10^{1}5$	$6,23.10^{1}5$	$3,12.10^{1}5$
100 kVolt	$9,00.10^{1}5$	$4,50.10^{1}5$	9,38 .10 ¹ 5	$4,69.10^{1}5$

Tabel I: Perhitungan Doses Ion Implan Total (D) Plasma Ar-He dan Komponen Doses Ion Ar^+ dan Ion He⁺ (d_{Ar^+} dan d_{He^+}) untuk berbagai Tegangan Pulsa V_0 dengan lebar pulsa $t_p = 10^{-5}$ sekon

namis yang lebih kecil, maka plasma Ar-He komposisi 75% ion Ar^+ - 25% ion He^+ mempunyai rapat arus ion total yang lebih kecil [kurva j4175(t)].

IV. SIMPULAN

Telah dikembangkan sebuah model *sheath* dinamis tanpa tumbukan plasma multispesies bermuatan tunggal untuk proses PIII. Dalam model ini ditentukan ekspansi *sheath* dinamis, rapat arus ion implan total, doses implan total dan komponen doses ion dengan menggunakan massa efektif yang merupakan fungsi dari komposisi dan massa ion dari masing-masing spesies yang berbeda.Diantara plasma Ar-He, plasma Ar dan plasma He, plasma He mempunyai ekspansi *sheath* dinamis dan rapat arus ion terbesar. Berikutnya adalah plasma Ar-He dan plasma Ar. Ini disebabkan karena plasma He mempunyai massa ion terkecil dibandingkan dengan massa ion Ar⁺ dan massa efektif ion plasma Ar-He. Massa efektif saat arus ion dalam keadaan mantap adalah merupakan pendekatan yang sangat baik untuk perhitungan sheath dinamis. Hanya pada permulaan pulsa yang sesuai untuk massa efektif arus ion keadaan dinamis. Sedangkan sebagian besar didominasi oleh massa efektif arus ion keadaan mantap.Dari prediksi model yang dikembangkan, untuk plasma Ar-He dengan komposisi 50% ion Ar^+ - 50% ion He^+ pada tegangan 10 kVolt dan lebar pulsa 10^{-5} sekon didapatkan doses implan total DAr-He=7,13.10¹⁴ /m² dan komponen doses implan $d_{Ar^+} = d_{He^+}$ $= 3,57.10^{14} / m^2$. Tegangan yang diberikan adalah 10 kVolt dengan lebar pulsa 2.10^{-5} sekon.Diantara komposisi 50% ion Ar^{+} - 50% ion He^{+} , 25% ion Ar^{+} - 75% ion He^{+} dan 75% ion Ar^+ - 25% ion He^+ dalam plasma Ar-He didapatkan ekpansi Sheath dinamis dan rapat arus ion implan terbesar pada komposisi 25% ion Ar^+ - 75% ion He^+ . Hal ini disebabkan karena pada komposisi ini ekspansi sheath dinamis dan rapat arus ion implan didominasi oleh ion He^+ (persentase terbesar) yang memang mempunyai ekspansi sheath dan rapat arus ion implan lebih besar dari pada ion Ar^+ .

- [1] J. R. Conrad, J. Appl. Phys., 62, 777 (1987)
- [2] M. A. Lieberman, J. Appl. Phys., 66, 2926 (1989)
- [3] J. T. Scheuer, M. Shamim and J. R. Conrad, J. Appl. Phys., 67, 1241 (1990).
- [4] R.A. Stewart and M.A. Lieberman, J. Appl. Phys., 70, 3481 (1991).
- [5] S. Qin, Z. Jin and C. Chan, J. Appl. Phys., 78, 55 (1995)